Extensions 1→N→G→Q→1 with N=C22 and Q=C9⋊A4

Direct product G=N×Q with N=C22 and Q=C9⋊A4
dρLabelID
C22×C9⋊A4108C2^2xC9:A4432,547

Semidirect products G=N:Q with N=C22 and Q=C9⋊A4
extensionφ:Q→Aut NdρLabelID
C221(C9⋊A4) = C2423- 1+2φ: C9⋊A4/C3.A4C3 ⊆ Aut C22369C2^2:1(C9:A4)432,528
C222(C9⋊A4) = C2443- 1+2φ: C9⋊A4/C2×C18C3 ⊆ Aut C22108C2^2:2(C9:A4)432,552
C223(C9⋊A4) = C24⋊3- 1+2φ: C9⋊A4/C3×A4C3 ⊆ Aut C22549C2^2:3(C9:A4)432,527

Non-split extensions G=N.Q with N=C22 and Q=C9⋊A4
extensionφ:Q→Aut NdρLabelID
C22.(C9⋊A4) = C42⋊3- 1+2φ: C9⋊A4/C2×C18C3 ⊆ Aut C221083C2^2.(C9:A4)432,100
C22.2(C9⋊A4) = C2×C18.A4central extension (φ=1)144C2^2.2(C9:A4)432,328

׿
×
𝔽